import pickle
from typing import Union
from dagster import (
Field,
InputContext,
IOManager,
OutputContext,
StringSource,
_check as check,
io_manager,
)
from dagster._utils import PICKLE_PROTOCOL
from dagster._utils.backoff import backoff
from google.api_core.exceptions import Forbidden, ServiceUnavailable, TooManyRequests
from google.cloud import storage
DEFAULT_LEASE_DURATION = 60 # One minute
class PickledObjectGCSIOManager(IOManager):
def __init__(self, bucket, client=None, prefix="dagster"):
self.bucket = check.str_param(bucket, "bucket")
self.client = client or storage.Client()
self.bucket_obj = self.client.bucket(bucket)
check.invariant(self.bucket_obj.exists())
self.prefix = check.str_param(prefix, "prefix")
def _get_path(self, context: Union[InputContext, OutputContext]) -> str:
if context.has_asset_key:
path = context.get_asset_identifier()
else:
parts = context.get_identifier()
run_id = parts[0]
output_parts = parts[1:]
path = ["storage", run_id, "files", *output_parts]
return "/".join([self.prefix, *path])
def _rm_object(self, key):
check.str_param(key, "key")
check.param_invariant(len(key) > 0, "key")
if self.bucket_obj.blob(key).exists():
self.bucket_obj.blob(key).delete()
def _has_object(self, key):
check.str_param(key, "key")
check.param_invariant(len(key) > 0, "key")
blobs = self.client.list_blobs(self.bucket, prefix=key)
return len(list(blobs)) > 0
def _uri_for_key(self, key):
check.str_param(key, "key")
return "gs://" + self.bucket + "/" + "{key}".format(key=key)
def load_input(self, context):
if context.dagster_type.typing_type == type(None):
return None
key = self._get_path(context)
context.log.debug(f"Loading GCS object from: {self._uri_for_key(key)}")
bytes_obj = self.bucket_obj.blob(key).download_as_bytes()
obj = pickle.loads(bytes_obj)
return obj
def handle_output(self, context, obj):
if context.dagster_type.typing_type == type(None):
check.invariant(
obj is None,
(
"Output had Nothing type or 'None' annotation, but handle_output received"
f" value that was not None and was of type {type(obj)}."
),
)
return None
key = self._get_path(context)
context.log.debug(f"Writing GCS object at: {self._uri_for_key(key)}")
if self._has_object(key):
context.log.warning(f"Removing existing GCS key: {key}")
self._rm_object(key)
pickled_obj = pickle.dumps(obj, PICKLE_PROTOCOL)
backoff(
self.bucket_obj.blob(key).upload_from_string,
args=[pickled_obj],
retry_on=(TooManyRequests, Forbidden, ServiceUnavailable),
)
[docs]@io_manager(
config_schema={
"gcs_bucket": Field(StringSource),
"gcs_prefix": Field(StringSource, is_required=False, default_value="dagster"),
},
required_resource_keys={"gcs"},
)
def gcs_pickle_io_manager(init_context):
"""Persistent IO manager using GCS for storage.
Serializes objects via pickling. Suitable for objects storage for distributed executors, so long
as each execution node has network connectivity and credentials for GCS and the backing bucket.
Assigns each op output to a unique filepath containing run ID, step key, and output name.
Assigns each asset to a single filesystem path, at "<base_dir>/<asset_key>". If the asset key
has multiple components, the final component is used as the name of the file, and the preceding
components as parent directories under the base_dir.
Subsequent materializations of an asset will overwrite previous materializations of that asset.
With a base directory of "/my/base/path", an asset with key
`AssetKey(["one", "two", "three"])` would be stored in a file called "three" in a directory
with path "/my/base/path/one/two/".
Example usage:
1. Attach this IO manager to a set of assets.
.. code-block:: python
from dagster import asset, repository, with_resources
from dagster_gcp.gcs import gcs_pickle_io_manager, gcs_resource
@asset
def asset1():
# create df ...
return df
@asset
def asset2(asset1):
return asset1[:5]
@repository
def repo():
return with_resources(
[asset1, asset2],
resource_defs={
"io_manager": gcs_pickle_io_manager.configured(
{"gcs_bucket": "my-cool-bucket", "gcs_prefix": "my-cool-prefix"}
),
"gcs": gcs_resource,
},
)
2. Attach this IO manager to your job to make it available to your ops.
.. code-block:: python
from dagster import job
from dagster_gcp.gcs import gcs_pickle_io_manager, gcs_resource
@job(
resource_defs={
"io_manager": gcs_pickle_io_manager.configured(
{"gcs_bucket": "my-cool-bucket", "gcs_prefix": "my-cool-prefix"}
),
"gcs": gcs_resource,
},
)
def my_job():
...
"""
client = init_context.resources.gcs
pickled_io_manager = PickledObjectGCSIOManager(
init_context.resource_config["gcs_bucket"],
client,
init_context.resource_config["gcs_prefix"],
)
return pickled_io_manager