Source code for dagster._core.execution.context.input

from datetime import datetime
from typing import (
    TYPE_CHECKING,
    Any,
    Iterable,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Union,
)

import dagster._check as check
from dagster._annotations import public
from dagster._core.definitions.events import AssetKey, AssetObservation
from dagster._core.definitions.metadata import (
    MetadataEntry,
)
from dagster._core.definitions.partition import PartitionsSubset
from dagster._core.definitions.partition_key_range import PartitionKeyRange
from dagster._core.definitions.time_window_partitions import TimeWindow, TimeWindowPartitionsSubset
from dagster._core.errors import DagsterInvariantViolationError
from dagster._core.instance import DagsterInstance, DynamicPartitionsStore

if TYPE_CHECKING:
    from dagster._core.definitions import PartitionsDefinition
    from dagster._core.definitions.op_definition import OpDefinition
    from dagster._core.definitions.resource_definition import Resources
    from dagster._core.events import DagsterEvent
    from dagster._core.execution.context.system import StepExecutionContext
    from dagster._core.log_manager import DagsterLogManager
    from dagster._core.types.dagster_type import DagsterType

    from .output import OutputContext


[docs]class InputContext: """The ``context`` object available to the load_input method of :py:class:`RootInputManager`. Users should not instantiate this object directly. In order to construct an `InputContext` for testing an IO Manager's `load_input` method, use :py:func:`dagster.build_input_context`. Attributes: name (Optional[str]): The name of the input that we're loading. config (Optional[Any]): The config attached to the input that we're loading. metadata (Optional[Dict[str, Any]]): A dict of metadata that is assigned to the InputDefinition that we're loading for. This property only contains metadata passed in explicitly with :py:class:`AssetIn` or :py:class:`In`. To access metadata of an upstream asset or operation definition, use the metadata in :py:attr:`.InputContext.upstream_output`. upstream_output (Optional[OutputContext]): Info about the output that produced the object we're loading. dagster_type (Optional[DagsterType]): The type of this input. Dagster types do not propagate from an upstream output to downstream inputs, and this property only captures type information for the input that is either passed in explicitly with :py:class:`AssetIn` or :py:class:`In`, or can be infered from type hints. For an asset input, the Dagster type from the upstream asset definition is ignored. log (Optional[DagsterLogManager]): The log manager to use for this input. resource_config (Optional[Dict[str, Any]]): The config associated with the resource that initializes the RootInputManager. resources (Optional[Resources]): The resources required by the resource that initializes the input manager. If using the :py:func:`@root_input_manager` decorator, these resources correspond to those requested with the `required_resource_keys` parameter. op_def (Optional[OpDefinition]): The definition of the op that's loading the input. Example: .. code-block:: python from dagster import IOManager, InputContext class MyIOManager(IOManager): def load_input(self, context: InputContext): ... """ def __init__( self, *, name: Optional[str] = None, job_name: Optional[str] = None, op_def: Optional["OpDefinition"] = None, config: Optional[Any] = None, metadata: Optional[Mapping[str, Any]] = None, upstream_output: Optional["OutputContext"] = None, dagster_type: Optional["DagsterType"] = None, log_manager: Optional["DagsterLogManager"] = None, resource_config: Optional[Mapping[str, Any]] = None, resources: Optional[Union["Resources", Mapping[str, Any]]] = None, step_context: Optional["StepExecutionContext"] = None, asset_key: Optional[AssetKey] = None, partition_key: Optional[str] = None, asset_partitions_subset: Optional[PartitionsSubset] = None, asset_partitions_def: Optional["PartitionsDefinition"] = None, instance: Optional[DagsterInstance] = None, ): from dagster._core.definitions.resource_definition import IContainsGenerator, Resources from dagster._core.execution.build_resources import build_resources self._name = name self._job_name = job_name self._op_def = op_def self._config = config self._metadata = metadata self._upstream_output = upstream_output self._dagster_type = dagster_type self._log = log_manager self._resource_config = resource_config self._step_context = step_context self._asset_key = asset_key if self._step_context and self._step_context.has_partition_key: self._partition_key: Optional[str] = self._step_context.partition_key else: self._partition_key = partition_key self._asset_partitions_subset = asset_partitions_subset self._asset_partitions_def = asset_partitions_def if isinstance(resources, Resources): self._resources_cm = None self._resources = resources else: self._resources_cm = build_resources( check.opt_mapping_param(resources, "resources", key_type=str) ) self._resources = self._resources_cm.__enter__() self._resources_contain_cm = isinstance(self._resources, IContainsGenerator) self._cm_scope_entered = False self._events: List["DagsterEvent"] = [] self._observations: List[AssetObservation] = [] self._metadata_entries: List[MetadataEntry] = [] self._instance = instance def __enter__(self): if self._resources_cm: self._cm_scope_entered = True return self def __exit__(self, *exc): if self._resources_cm: self._resources_cm.__exit__(*exc) def __del__(self): if self._resources_cm and self._resources_contain_cm and not self._cm_scope_entered: self._resources_cm.__exit__(None, None, None) @property def instance(self) -> DagsterInstance: if self._instance is None: raise DagsterInvariantViolationError( "Attempting to access instance, " "but it was not provided when constructing the InputContext" ) return self._instance @public @property def has_input_name(self) -> bool: """If we're the InputContext is being used to load the result of a run from outside the run, then it won't have an input name. """ return self._name is not None @public @property def name(self) -> str: if self._name is None: raise DagsterInvariantViolationError( "Attempting to access name, " "but it was not provided when constructing the InputContext" ) return self._name @property def job_name(self) -> str: if self._job_name is None: raise DagsterInvariantViolationError( "Attempting to access job_name, " "but it was not provided when constructing the InputContext" ) return self._job_name @property def pipeline_name(self) -> str: return self.job_name @public @property def op_def(self) -> "OpDefinition": if self._op_def is None: raise DagsterInvariantViolationError( "Attempting to access op_def, " "but it was not provided when constructing the InputContext" ) return self._op_def @public @property def config(self) -> Any: return self._config @public @property def metadata(self) -> Optional[Mapping[str, Any]]: return self._metadata @public @property def upstream_output(self) -> Optional["OutputContext"]: return self._upstream_output @public @property def dagster_type(self) -> "DagsterType": if self._dagster_type is None: raise DagsterInvariantViolationError( "Attempting to access dagster_type, " "but it was not provided when constructing the InputContext" ) return self._dagster_type @public @property def log(self) -> "DagsterLogManager": if self._log is None: raise DagsterInvariantViolationError( "Attempting to access log, " "but it was not provided when constructing the InputContext" ) return self._log @public @property def resource_config(self) -> Optional[Mapping[str, Any]]: return self._resource_config @public @property def resources(self) -> Any: if self._resources is None: raise DagsterInvariantViolationError( "Attempting to access resources, " "but it was not provided when constructing the InputContext" ) if self._resources_cm and self._resources_contain_cm and not self._cm_scope_entered: raise DagsterInvariantViolationError( "At least one provided resource is a generator, but attempting to access " "resources outside of context manager scope. You can use the following syntax to " "open a context manager: `with build_input_context(...) as context:`" ) return self._resources @public @property def has_asset_key(self) -> bool: return self._asset_key is not None @public @property def asset_key(self) -> AssetKey: if self._asset_key is None: raise DagsterInvariantViolationError( "Attempting to access asset_key, but no asset is associated with this input" ) return self._asset_key @public @property def asset_partitions_def(self) -> "PartitionsDefinition": """The PartitionsDefinition on the upstream asset corresponding to this input.""" if self._asset_partitions_def is None: if self.asset_key: raise DagsterInvariantViolationError( f"Attempting to access partitions def for asset {self.asset_key}, but it is not" " partitioned" ) else: raise DagsterInvariantViolationError( "Attempting to access partitions def for asset, but input does not correspond" " to an asset" ) return self._asset_partitions_def @property def step_context(self) -> "StepExecutionContext": if self._step_context is None: raise DagsterInvariantViolationError( "Attempting to access step_context, " "but it was not provided when constructing the InputContext" ) return self._step_context @public @property def has_partition_key(self) -> bool: """Whether the current run is a partitioned run.""" return self._partition_key is not None @public @property def partition_key(self) -> str: """The partition key for the current run. Raises an error if the current run is not a partitioned run. """ if self._partition_key is None: check.failed( "Tried to access partition_key on a non-partitioned run.", ) return self._partition_key @public @property def has_asset_partitions(self) -> bool: return self._asset_partitions_subset is not None @public @property def asset_partition_key(self) -> str: """The partition key for input asset. Raises an error if the input asset has no partitioning, or if the run covers a partition range for the input asset. """ subset = self._asset_partitions_subset if subset is None: check.failed("The input does not correspond to a partitioned asset.") partition_keys = list(subset.get_partition_keys()) if len(partition_keys) == 1: return partition_keys[0] else: check.failed( f"Tried to access partition key for asset '{self.asset_key}', " f"but the number of input partitions != 1: '{subset}'." ) @public @property def asset_partition_key_range(self) -> PartitionKeyRange: """The partition key range for input asset. Raises an error if the input asset has no partitioning. """ subset = self._asset_partitions_subset if subset is None: check.failed( "Tried to access asset_partition_key_range, but the asset is not partitioned.", ) partition_key_ranges = subset.get_partition_key_ranges( dynamic_partitions_store=self.instance ) if len(partition_key_ranges) != 1: check.failed( ( "Tried to access asset_partition_key_range, but there are " f"({len(partition_key_ranges)}) key ranges associated with this input." ), ) return partition_key_ranges[0] @public @property def asset_partition_keys(self) -> Sequence[str]: """The partition keys for input asset. Raises an error if the input asset has no partitioning. """ if self._asset_partitions_subset is None: check.failed( "Tried to access asset_partition_keys, but the asset is not partitioned.", ) return list(self._asset_partitions_subset.get_partition_keys()) @public @property def asset_partitions_time_window(self) -> TimeWindow: """The time window for the partitions of the input asset. Raises an error if either of the following are true: - The input asset has no partitioning. - The input asset is not partitioned with a TimeWindowPartitionsDefinition. """ subset = self._asset_partitions_subset if subset is None: check.failed( "Tried to access asset_partitions_time_window, but the asset is not partitioned.", ) if not isinstance(subset, TimeWindowPartitionsSubset): check.failed( ( "Tried to access asset_partitions_time_window, but the asset is not partitioned" " with time windows." ), ) time_windows = subset.included_time_windows if len(time_windows) != 1: check.failed( ( "Tried to access asset_partition_key_range, but there are " f"({len(time_windows)}) partitions associated with this input." ), ) return time_windows[0]
[docs] @public def get_identifier(self) -> Sequence[str]: """Utility method to get a collection of identifiers that as a whole represent a unique step input. If not using memoization, the unique identifier collection consists of - ``run_id``: the id of the run which generates the input. Note: This method also handles the re-execution memoization logic. If the step that generates the input is skipped in the re-execution, the ``run_id`` will be the id of its parent run. - ``step_key``: the key for a compute step. - ``name``: the name of the output. (default: 'result'). If using memoization, the ``version`` corresponding to the step output is used in place of the ``run_id``. Returns: List[str, ...]: A list of identifiers, i.e. (run_id or version), step_key, and output_name """ if self.upstream_output is None: raise DagsterInvariantViolationError( "InputContext.upstream_output not defined. Cannot compute an identifier" ) return self.upstream_output.get_identifier()
@public def get_asset_identifier(self) -> Sequence[str]: if self.asset_key is not None: if self.has_asset_partitions: return [*self.asset_key.path, self.asset_partition_key] else: return self.asset_key.path else: check.failed("Can't get asset identifier for an input with no asset key") def consume_events(self) -> Iterator["DagsterEvent"]: """Pops and yields all user-generated events that have been recorded from this context. If consume_events has not yet been called, this will yield all logged events since the call to `handle_input`. If consume_events has been called, it will yield all events since the last time consume_events was called. Designed for internal use. Users should never need to invoke this method. """ events = self._events self._events = [] yield from events def add_input_metadata( self, metadata: Mapping[str, Any], description: Optional[str] = None, ) -> None: """Accepts a dictionary of metadata. Metadata entries will appear on the LOADED_INPUT event. If the input is an asset, metadata will be attached to an asset observation. The asset observation will be yielded from the run and appear in the event log. Only valid if the context has an asset key. """ from dagster._core.definitions.metadata import normalize_metadata from dagster._core.events import DagsterEvent metadata = check.mapping_param(metadata, "metadata", key_type=str) self._metadata_entries.extend(normalize_metadata(metadata, [])) if self.has_asset_key: check.opt_str_param(description, "description") observation = AssetObservation( asset_key=self.asset_key, description=description, partition=self.asset_partition_key if self.has_asset_partitions else None, metadata=metadata, ) self._observations.append(observation) if self._step_context: self._events.append(DagsterEvent.asset_observation(self._step_context, observation)) def get_observations( self, ) -> Sequence[AssetObservation]: """Retrieve the list of user-generated asset observations that were observed via the context. User-generated events that were yielded will not appear in this list. **Examples:** .. code-block:: python from dagster import IOManager, build_input_context, AssetObservation class MyIOManager(IOManager): def load_input(self, context, obj): ... def test_load_input(): mgr = MyIOManager() context = build_input_context() mgr.load_input(context) observations = context.get_observations() ... """ return self._observations def consume_metadata_entries(self) -> Sequence[MetadataEntry]: result = self._metadata_entries self._metadata_entries = [] return result
[docs]def build_input_context( name: Optional[str] = None, config: Optional[Any] = None, metadata: Optional[Mapping[str, Any]] = None, upstream_output: Optional["OutputContext"] = None, dagster_type: Optional["DagsterType"] = None, resource_config: Optional[Mapping[str, Any]] = None, resources: Optional[Mapping[str, Any]] = None, op_def: Optional["OpDefinition"] = None, step_context: Optional["StepExecutionContext"] = None, asset_key: Optional["AssetKey"] = None, partition_key: Optional[str] = None, asset_partition_key_range: Optional[PartitionKeyRange] = None, asset_partitions_def: Optional["PartitionsDefinition"] = None, instance: Optional[DagsterInstance] = None, ) -> "InputContext": """Builds input context from provided parameters. ``build_input_context`` can be used as either a function, or a context manager. If resources that are also context managers are provided, then ``build_input_context`` must be used as a context manager. Args: name (Optional[str]): The name of the input that we're loading. config (Optional[Any]): The config attached to the input that we're loading. metadata (Optional[Dict[str, Any]]): A dict of metadata that is assigned to the InputDefinition that we're loading for. upstream_output (Optional[OutputContext]): Info about the output that produced the object we're loading. dagster_type (Optional[DagsterType]): The type of this input. resource_config (Optional[Dict[str, Any]]): The resource config to make available from the input context. This usually corresponds to the config provided to the resource that loads the input manager. resources (Optional[Dict[str, Any]]): The resources to make available from the context. For a given key, you can provide either an actual instance of an object, or a resource definition. asset_key (Optional[AssetKey]): The asset key attached to the InputDefinition. op_def (Optional[OpDefinition]): The definition of the op that's loading the input. step_context (Optional[StepExecutionContext]): For internal use. partition_key (Optional[str]): String value representing partition key to execute with. asset_partition_key_range (Optional[str]): The range of asset partition keys to load. asset_partitions_def: Optional[PartitionsDefinition]: The PartitionsDefinition of the asset being loaded. Examples: .. code-block:: python build_input_context() with build_input_context(resources={"foo": context_manager_resource}) as context: do_something """ from dagster._core.definitions import OpDefinition, PartitionsDefinition from dagster._core.execution.context.output import OutputContext from dagster._core.execution.context.system import StepExecutionContext from dagster._core.execution.context_creation_pipeline import initialize_console_manager from dagster._core.types.dagster_type import DagsterType name = check.opt_str_param(name, "name") metadata = check.opt_mapping_param(metadata, "metadata", key_type=str) upstream_output = check.opt_inst_param(upstream_output, "upstream_output", OutputContext) dagster_type = check.opt_inst_param(dagster_type, "dagster_type", DagsterType) resource_config = check.opt_mapping_param(resource_config, "resource_config", key_type=str) resources = check.opt_mapping_param(resources, "resources", key_type=str) op_def = check.opt_inst_param(op_def, "op_def", OpDefinition) step_context = check.opt_inst_param(step_context, "step_context", StepExecutionContext) asset_key = check.opt_inst_param(asset_key, "asset_key", AssetKey) partition_key = check.opt_str_param(partition_key, "partition_key") asset_partition_key_range = check.opt_inst_param( asset_partition_key_range, "asset_partition_key_range", PartitionKeyRange ) asset_partitions_def = check.opt_inst_param( asset_partitions_def, "asset_partitions_def", PartitionsDefinition ) if asset_partitions_def and asset_partition_key_range: asset_partitions_subset = asset_partitions_def.empty_subset().with_partition_key_range( asset_partition_key_range, dynamic_partitions_store=instance ) elif asset_partition_key_range: asset_partitions_subset = KeyRangeNoPartitionsDefPartitionsSubset(asset_partition_key_range) else: asset_partitions_subset = None return InputContext( name=name, job_name=None, config=config, metadata=metadata, upstream_output=upstream_output, dagster_type=dagster_type, log_manager=initialize_console_manager(None), resource_config=resource_config, resources=resources, step_context=step_context, op_def=op_def, asset_key=asset_key, partition_key=partition_key, asset_partitions_subset=asset_partitions_subset, asset_partitions_def=asset_partitions_def, instance=instance, )
class KeyRangeNoPartitionsDefPartitionsSubset(PartitionsSubset): """For build_input_context when no PartitionsDefinition has been provided.""" def __init__(self, key_range: PartitionKeyRange): self._key_range = key_range def get_partition_keys_not_in_subset( self, current_time: Optional[datetime] = None, dynamic_partitions_store: Optional[DynamicPartitionsStore] = None, ) -> Iterable[str]: raise NotImplementedError() def get_partition_keys(self, current_time: Optional[datetime] = None) -> Iterable[str]: if self._key_range.start == self._key_range.end: return self._key_range.start else: raise NotImplementedError() def get_partition_key_ranges( self, current_time: Optional[datetime] = None, dynamic_partitions_store: Optional[DynamicPartitionsStore] = None, ) -> Sequence[PartitionKeyRange]: return [self._key_range] def with_partition_keys(self, partition_keys: Iterable[str]) -> "PartitionsSubset": raise NotImplementedError() def with_partition_key_range( self, partition_key_range: PartitionKeyRange, dynamic_partitions_store: Optional[DynamicPartitionsStore] = None, ) -> "PartitionsSubset": raise NotImplementedError() def serialize(self) -> str: raise NotImplementedError() @property def partitions_def(self) -> "PartitionsDefinition": raise NotImplementedError() def __len__(self) -> int: raise NotImplementedError() def __contains__(self, value) -> bool: raise NotImplementedError() @classmethod def from_serialized( cls, partitions_def: "PartitionsDefinition", serialized: str ) -> "PartitionsSubset": raise NotImplementedError() @classmethod def can_deserialize( cls, partitions_def: "PartitionsDefinition", serialized: str, serialized_partitions_def_unique_id: Optional[str], serialized_partitions_def_class_name: Optional[str], ) -> bool: raise NotImplementedError() @classmethod def empty_subset(cls, partitions_def: "PartitionsDefinition") -> "PartitionsSubset": raise NotImplementedError()